Theranostic Performance of Acoustic Nanodroplet Vaporization-Generated Bubbles in Tumor Intertissue

نویسندگان

  • Yi-Ju Ho
  • Chih-Kuang Yeh
چکیده

Solid tumors with poorly perfused regions reveal some of the treatment limitations that restrict drug delivery and therapeutic efficacy. Acoustic droplet vaporization (ADV) has been applied to directly disrupt vessels and release nanodroplets, ADV-generated bubbles (ADV-Bs), and drugs into tumor tissue. In this study, we investigated the in vivo behavior of ADV-Bs stimulated by US, and evaluated the possibility of moving intertissue ADV-Bs into the poorly perfused regions of solid tumors. Intravital imaging revealed intertissue ADV-B formation, movement, and cavitation triggered by US, where the distance of intertissue ADV-B movement was 33-99 µm per pulse. When ADV-Bs were applied to tumor cells, the cell membrane was damaged, increasing cellular permeability or inducing cell death. The poorly perfused regions within solid tumors show enhancement due to ADV-B accumulation after application of US-triggered ADV-B. The intratumoral nanodroplet or ADV-B distribution around the poorly perfused regions with tumor necrosis or hypoxia were demonstrated by histological assessment. ADV-B formation, movement and cavitation could induce cell membrane damage by mechanical force providing a mechanism to overcome treatment limitations in poorly perfused regions of tumors.

منابع مشابه

Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization

Drug penetration influences the efficacy of tumor therapy. Although the leaky vessels of tumors can improve the penetration of nanodrugs via the enhanced permeability and retention (EPR) effect, various aspects of the tumor microenvironment still restrict this process. This study investigated whether vascular disruption using the acoustic vaporization of micro- or nanoscale droplets (MDs or NDs...

متن کامل

Abstract Submitted for the DFD09 Meeting of The American Physical Society Acoustic Droplet Vaporization through PDMS DAVID LI, STAN-

Submitted for the DFD09 Meeting of The American Physical Society Acoustic Droplet Vaporization through PDMS DAVID LI, STANLEY SAMUEL, J. BRIAN FOWLKES, JOSEPH BULL, The University of Michigan — Acoustic droplet vaporization (ADV) involves the generation of bubbles from albumin-encapsulated perfluorocarbon (PFC) droplets that have been insonated with high intensity ultrasound (US). Gas embolothe...

متن کامل

Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment

Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation rel...

متن کامل

Nanodroplet-Mediated Histotripsy for Image-guided Targeted Ultrasound Cell Ablation

This paper is an initial work towards developing an image-guided, targeted ultrasound ablation technique by combining histotripsy with nanodroplets that can be selectively delivered to tumor cells. Using extremely short, high-pressure pulses, histotripsy generates a dense cloud of cavitating microbubbles that fractionates tissue. We hypothesize that synthetic nanodroplets that encapsulate a per...

متن کامل

The impact of vaporized nanoemulsions on ultrasound-mediated ablation

BACKGROUND The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017